

INTEGRATED TECHNICAL EDUCATION CLUSTER AT ALAMEERIA

E-7 | 6-A Mobile Communications Systems

Lecture #8 2G CDMA Mobile Systems

Instructor: Dr. Ahmad El-Banna

2G IN EGYPT

© Ahmad E-716-A, Lec#8, Dec 2014

)anna

N

2G in Egypt

- Mobinil
 - 1998, Buy the 1st mobile license in Egypt from Telecom Egypt.
 - Contributors: Orascom Telecom Egypt & France Telecom Orange .
 - First announcement of EDGE Technology.
 - First usage of Micro BTS to cover El-Azhar tunnels and Metro/Subway stations.
- Vodafone
 - 1998, got the 2nd mobile license in Egypt.
 - Known as (misr phone/ Click GSM)
 - Contributors: Vodafone, air touch and some local & International partners.
 - 2002, Vodafone Egypt instead of Click GSM.
 - 2007, 54.93% for Vodafone & 44.94% Telecom Egypt & 0.13 % free
- Etisalat
 - In 2007, got the 3rd mobile license in Egypt.
 - Contributors: Etisalat Emirates , Egypt Post, NBE bank & others.
 - The first 3G (3.5 G) services (video call, mobile TV, ..) in Egypt.
 - 1 million subscriber in 50 days !
 - Currently provide 2G & 3G services.

© Ahmad] E-716-A, Lec#8, Dec 2014

E L Banna

E-716-A. Lec#8, Dec 201

2G CDMA

- Higher quality signals
- Higher data rates
- Support of digital services
- Greater capacity
- Digital traffic channels
 - Support digital data
 - Voice traffic digitized
 - User traffic (data or digitized voice) converted to analog signal for transmission
- Encryption
 - Simple to encrypt digital traffic
- Error detection and correction
 - Very clear voice reception
- Channel access
 - Channel dynamically shared by users via Time division multiple access (TDMA) or code division multiple access (CDMA)
- Each cell allocated frequency bandwidth
 - Split in two
 - Half for reverse, half for forward
 - Direct-sequence spread spectrum (DSSS)

E-716-A, Lec#8, Dec

CDMA Advantages

- Frequency diversity
 - Frequency-dependent transmission impairments (noise bursts, selective fading) have less effect
- Multipath resistance
 - DSSS overcomes multipath fading by frequency diversity
 - Also, chipping codes used only exhibit low cross correlation and low autocorrelation
 - Version of signal delayed more than one chip interval does not interfere with the dominant signal as much
- Privacy
 - From spread spectrum (see chapter 9)
- Graceful degradation
 - With FDMA or TDMA, fixed number of users can access system simultaneously
 - With CDMA, as more users access the system simultaneously, noise level and hence error rate increases
 - Gradually system degrades

2014

E-716-A, Lec#8, Dec

CDMA Disadvantages

- Self-jamming
 - Unless all mobile users are perfectly synchronized, arriving transmissions from multiple users will not be perfectly aligned on chip boundaries
 - Spreading sequences of different users not orthogonal
 - Some cross correlation
 - Distinct from either TDMA or FDMA
 - In which, for reasonable time or frequency guardbands, respectively, received signals are orthogonal or nearly so
- Near-far problem
 - Signals closer to receiver are received with less attenuation than signals farther away
 - Given lack of complete orthogonality, transmissions from more remote mobile units may be more difficult to recover

201

, Dec

E-716-A, Lec#8

CDMA Design Consideration (RAKE Receiver)

- If multiple versions of signal arrive more than one chip interval apart, receiver can recover signal by correlating chip sequence with dominant incoming signal
 - Remaining signals treated as noise
- Better performance if receiver attempts to recover signals from multiple paths and combine them, with suitable delays
- Original binary signal is spread by XOR operation with chipping code
- Spread sequence modulated for transmission over wireless channel
- Multipath effects generate multiple copies of signal
 - Each with a different amount of time delay (τ 1, τ 2, etc.)
 - Each with a different attenuation factors (a1, a2, etc.)
 - Receiver demodulates combined signal
 - Demodulated chip stream fed into multiple correlators, each delayed by different amount
 - Signals combined using weighting factors estimated from the channel

Principal of RAKE Receiver

)anna

10

IS-95 Channel Structure

• IS-95

- Second generation CDMA scheme
- Primarily deployed in North America
- Transmission structures different on forward and reverse links

)anna

, Dec 201

E-716-A, Lec#8

IS-95 Forward Link

- Up to 64 logical CDMA channels each occupying the same 1228kHz bandwidth
- Four types of channels:
 - Pilot (channel 0)
 - Continuous signal on a single channel
 - Allows mobile unit to acquire timing information •
 - Provides phase reference for demodulation process ۲
 - Provides signal strength comparison for handoff determination
 - Consists of all zeros
 - Synchronization (channel 32)
 - 1200-bps channel used by mobile station to obtain identification information about the cellular system
 - System time, long code state, protocol revision, etc.

201.

IS-95 Forward Link..

- Paging (channels 1 to 7)
 - Contain messages for one or more mobile stations
- Traffic (channels 8 to 31 and 33 to 63)
 - 55 traffic channels
 - Original specification supported data rates of up to 9600 bps
 - Revision added rates up to 14,400 bps
- All channels use same bandwidth
 - Chipping code distinguishes among channels
 - Chipping codes are the 64 orthogonal 64-bit codes derived from 64 \times 64 Walsh matrix

Channel	Sync	Paging		Traffic Rate Set 1				Traffic Rate Set 2			
Data rate (bps)	1200	4800	9600	1200	2400	4800	9600	1800	3600	7200	14400
Code repetition	2	2	1	8	4	2	1	8	4	2	1
Modulation symbol rate (sps)	4800	19,200	19,200	19,200	19,200	19,200	19,200	19,200	19,200	19,200	19,200
PN chips/modulation											
symbol	256	64	64	64	64	64	64	64	64	64	64
PN chips/bit	1024	256	128	1024	512	256	128	682.67	341.33	170.67	85.33

Forward Link Processing

- Voice traffic encoded at 8550 bps
- Additional bits added for error detection
 - Rate now 9600 bps
- Full capacity not used when user not speaking
- Quiet period data rate as low as 1200 bps
- 2400 bps rate used to transmit transients in background noise
- 4800 bps rate to mix digitized speech and signaling data
- Data transmitted in 20 ms blocks
- Forward error correction
 - Convolutional encoder with rate 1/2
 - Doubling effective data rate to 19.2 kbps
 - For lower data rates encoder output bits (called code symbols) replicated to yield 19.2-kbps
- Data interleaved in blocks to reduce effects of errors by spreading them

anna

, Dec 201

-716-A, Lec#8

Scrambling

- After interleaver, data scrambled
- Privacy mask
- Prevent sending of repetitive patterns
 - Reduces probability of users sending at peak power at same time
- Scrambling done by long code
 - Pseudorandom number generated from 42-bit-long shift register
 - Shift register initialized with user's electronic serial number
 - Output of long code generator is at a rate of 1.2288 Mbps
 - 64 times 19.2 kbps
 - One bit in 64 selected (by the decimator function)
 - Resulting stream XORed with output of block interleaver

201

, Dec

E-716-A, Lec#8

Power Control & DSSS

- Next step inserts power control information in traffic channel
 - To control the power output of antenna
 - Robs traffic channel of bits at rate of 800 bps by stealing code bits
 - 800-bps channel carries information directing mobile unit to change output level
 - Power control stream multiplexed into 19.2 kbps
 - Replace some code bits, using long code generator to encode bits

DSSS:

- Spreads 19.2 kbps to 1.2288 Mbps
- Using one row of Walsh matrix
 - Assigned to mobile station during call setup
 - If 0 presented to XOR, 64 bits of assigned row sent
 - If 1 presented, bitwise XOR of row sent
- Final bit rate 1.2288 Mbps
- Bit stream modulated onto carrier using QPSK
 - Data split into I and Q (in-phase and quadrature) channels
 - Data in each channel XORed with unique short code
 - Pseudorandom numbers from 15-bit-long shift register

Forward Link Transmission

201.

. Dec

-716-A, Lec#8

Reverse Link

- Up to 94 logical CDMA channels
 - Each occupying same 1228-kHz bandwidth
 - Supports up to 32 access channels and 62 traffic channels
- Traffic channels mobile unique
 - Each station has unique long code mask based on serial number
 - 42-bit number, 2⁴² 1 different masks
 - Access channel used by mobile to initiate call, respond to paging channel message, and for location update

Channel	Access		Traffic-R	ate Set 1		Traffic-Rate Set 2				
Data rate (bps)	4800	1200	2400	4800	9600	1800	3600	7200	14400	
Code rate	1/3	1/3	1/3	1/3	1/3	1/2	1/2	1/2	1/2	
Symbol rate before repetition (sps)	14,400	3600	7200	14,400	28,800	3600	7200	14,400	28,800	
Symbol repetition	2	8	4	2	1	8	4	2	1	
Symbol rate after repetition (sps)	28,800	28,800	28,800	28,800	28,800	28,800	28,800	28,800	28,800	
Transmit duty cycle	1	1/8	1/4	1/2	1	1/8	1/4	1/2	1	
Code symbols/ modulation symbol	6	6	6	6	6	6	6	6	6	
PN chips/ modulation symbol	256	256	256	256	256	256	256	256	256	
PN chips/bit	256	128	128	128	128	256/3	256/3	256/3	256/3	

Reverse Link Processing and Spreading

- First steps same as forward channel
 - Convolutional encoder rate 1/3
 - Tripling effective data rate to max. 28.8 kbps
 - Data block interleaved
- Spreading using Walsh matrix
 - Use and purpose different from forward channel
 - Data from block interleaver grouped in units of 6 bits
 - Each 6-bit unit serves as index to select row of matrix (2⁶ = 64)
 - Row is substituted for input
 - Data rate expanded by factor of 64/6 to 307.2 kbps
 - Done to improve reception at BS
 - Because possible codings orthogonal, block coding enhances decisionmaking algorithm at receiver
 - Also computationally efficient
 - Walsh modulation form of block error-correcting code
 - (n, k) = (64, 6) and d_{min} = 32
 - In fact, all distances 32

E-716-A, Lec#8, Dec

201

-716-A, Lec#8 , Dec 2014 ©

Data Burst Randomizer & DSSS

- Reduce interference from other mobile stations
- Using long code mask to smooth data out over 20 ms frame

DSSS:

- Long code unique to mobile XORed with output of randomizer
- 1.2288-Mbps final data stream
- Modulated using orthogonal QPSK modulation scheme
- Differs from forward channel in use of delay element in modulator to produce orthogonality
 - Forward channel, spreading codes orthogonal
 - Coming from Walsh matrix
 - Reverse channel orthogonality of spreading codes not guaranteed

© Ahmad El-Banna E-716-A, Lec#8, Dec 2014

Reverse Link Transmission

-716-A, Lec#7, Nov 2014

- Chapter 4, J. Chiller, Mobile Communications, 2003.
- Chapter 10, W. Stallings, Wireless Communications and Networks, 2005.
- The lecture is available online at:
 - https://speakerdeck.com/ahmad_elbanna
- For inquires, send to:
 - <u>ahmad.elbanna@feng.bu.edu.eg</u>